Facile resolution of constrained geometry indenyl-phenoxide ligation \dagger

Luke E. Turner, Matthew G. Thorn, Phillip E. Fanwick and Ian P. Rothwell*
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2038, USA.
E-mail: rothwell@purdue.educ; Fax: 765-494-0239; Tel: 765-494-5473

Received (in Cambridge, UK) 2nd January 2003, Accepted 6th March 2003
First published as an Advance Article on the web 28th March 2003

The 2-(inden-3-yl)phenoxide ligand can be resolved at both tetrahedral and octahedral Group 4 metal centers using chiral binaphthoxide ligands.

The chemistry of ansa metallocenes and constrained geometry ligands at Group 4 metal centers continues to be an important area of transition metal chemistry. ${ }^{1}$ Of particular interest has been the design and application of chiral ligands of this type. ${ }^{2}$ We have begun to study the coordination chemistry of 2-(indenyl)phenoxide ligands, which demonstrate a variety of coordination modes. ${ }^{3}$ We wish to report here the resolution of this ligand system at both tetrahedral and an unusual octahedral Group 4 metal center.
Hydrocarbon solution of the ligands $\mathbf{1}$ and 2 (1 equiv.) react with the substrates $\left[\mathrm{M}\left(\mathrm{NMe}_{2}\right)_{4}\right](\mathrm{M}=\mathrm{Ti}, \mathrm{Zr})^{4}$ to produce the corresponding bis(amides) 3-5 via activation of both the phenolic OH and indenyl CH bonds (Scheme). $\dagger \ddagger$ Structural studies of $\mathbf{3}-\mathbf{5}, \S$ show the presence of both the $(\mathrm{p}-R)$ and (p-S) enantiomers within the unit cell due to the planar chirality generated via the indenyl coordination; Figure 1 shows ($\mathrm{p}-\mathrm{R}$)3.

The remaining dimethylamido ligands in 3-5 can undergo protonolysis reactions with a variety of reagents. Reaction of the Ti compounds 3 or $\mathbf{4}$ with (S)-3,3'-bis(trimethylsilyl)-1,1'-binapthyl- $2,2^{\prime}$-diol in aromatic solvents was found to initially produce a mixture of two diasteroisomers (6 and 7, Scheme 1) with well-resolved ligand signals within the NMR spectra. However, although at low temperatures a 50/50 mixture of isomers was observed for 6, at ambient temperature the formation of a major isomer was found to take place. Isolated crystals from this reaction mixture were found to contain only one diastereoisomer, the thermodynamically more stable (p S, S) form of $\mathbf{6}$. The presence of the methyl substituents on the indenyl ring of $\mathbf{7}$ does not appear to allow isomerization and a $50 / 50$ mixture is maintained even at $100{ }^{\circ} \mathrm{C}$ for days. Crystallization, however, did lead to the pure ($\mathrm{p}-\mathrm{S}, S$) form of 7 (Figure 2). In previous studies of pseudo-tetrahedral racbis(indenyl) ligand systems it has been shown that (S)binapthoxide ligands lead to a preferential ($\mathrm{p}-S$) coordination of the indenyl rings. ${ }^{5}$ The change in chirality of the chelated indenyl-phenoxide ligand cannot occur via simple phenoxide dissociation. Instead "flipping" of the indenyl ring must occur. We believe this occurs via a reversal of the process that leads to 3 and 4. Specifically it seems reasonable to propose reversible protonation of the indenyl ring can occur by the dimethylamine generated within the reaction. There is precedence for such a process in the interconversion of mer- and rac-bis(indenyl) systems. ${ }^{6}$ In the case of the 2,3-dimethyl-indenyl ligand, however, this process cannot lead directly to ring-flipping as the proton has to be abstracted from the same face to which it was originally delivered.
The reaction of 5 with (R)-3,3'-bis(trimethylsilyl)-1, 1^{\prime} -binaphthyl-2,2'-diol also gave an initial 50/50 mixture of

Fig. 1 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{3}$; (p-R form shown) $\mathrm{Ti}-\mathrm{O}(1) \quad 1.895(1)$, $\mathrm{Ti}-\mathrm{N}(2) \quad 1.905(2), \mathrm{Ti}-\mathrm{N}(3) \quad 1.913(2), \mathrm{Ti}-\mathrm{C}(121)$ $2.366(2), \mathrm{Ti}-\mathrm{C}(122) 2.381(2), \mathrm{Ti}-\mathrm{C}(123) 2.380(2), \mathrm{Ti}-\mathrm{C}(124) 2.417(2)$, $\mathrm{Ti}-\mathrm{C}(129) 2.405(2), \mathrm{O}(1)-\mathrm{Ti}-\mathrm{N}(2) 107.07(6), \mathrm{O}(1)-\mathrm{Ti}-\mathrm{N}(3) 100.22(6)$, $\mathrm{N}(2)-\mathrm{Ti}-\mathrm{N}(3) 102.02(6)$.

Fig. 2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $(\mathrm{p}-S, S)-7$: Ti-O(1) $1.864(2), \mathrm{Ti}-\mathrm{O}(2) 1.862(2), \mathrm{Ti}-\mathrm{O}(3) 1.866(2), \mathrm{Ti}-\mathrm{C}(11) 2.310(3), \mathrm{Ti}-\mathrm{C}(12)$ 2.318(3), Ti-C(13) 2.361(3), Ti-C(14) 2.522(3), Ti-C(19) 2.472(3), O(1)-$\mathrm{Ti}-\mathrm{O}(2) 96.91(9), \mathrm{O}(2)-\mathrm{Ti}-\mathrm{O}(3) 102.09(9), \mathrm{O}(1)-\mathrm{Ti}-\mathrm{O}(3) 115.72(9)$.

Fig. 3 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $(\mathrm{p}-R, R)-\mathbf{8}: \mathrm{Zr}-\mathrm{O}(1)$ 2.100(3), $\mathrm{Zr}-\mathrm{O}$ (2) 2.017(3), $\mathrm{Zr}-\mathrm{O}(3) 2.095(3), \mathrm{Zr}-\mathrm{O}$ (4) 2.387(3), $\mathrm{Zr}-\mathrm{O}(5)$ $2.356(3), \mathrm{Zr}-\mathrm{C}(11) 2.531(4), \mathrm{Zr}-\mathrm{C}(12) 2.511(4), \mathrm{Zr}-\mathrm{C}(13) 2.564(4), \mathrm{Zr}-$ $\mathrm{C}(14)$ 2.723(4), $\mathrm{Zr}-\mathrm{C}(19)$ 2.696(4), O(1)-Zr-O(2) 99.1(1), O(2)-Zr-O(3) 92.6(1), $\mathrm{O}(1)-\mathrm{Zr}-\mathrm{O}(3) 150.5(1), \mathrm{O}(2)-\mathrm{Zr}-\mathrm{O}(5) 82.25(12), \mathrm{O}(3)-\mathrm{Zr}-\mathrm{O}(5)$ $76.0(1), \mathrm{O}(1)-\mathrm{Zr}-\mathrm{O}(5) 78.8(1), \mathrm{O}(2)-\mathrm{Zr}-\mathrm{O}(4) 159.0(1), \mathrm{O}(3)-\mathrm{Zr}-\mathrm{O}(4)$ 79.2(1), $\mathrm{O}(1)-\mathrm{Zr}-\mathrm{O}(4) 80.3(1), \mathrm{O}(5)-\mathrm{Zr}-\mathrm{O}(4) 77.1(1)$.
diastereoisomers. It has proven difficult to isolate crystalline products from hydrocarbon solvents. However, use of THF was found to lead to crystals of a new compound $\mathbf{8}$ shown to contain a pseudo-octahedral zirconium metal center (Figure 3). Interestingly 8 can be seen to contain a $p-R$ chelated indenylphenoxide and two, cis-coordinated THF molecules along with the (R)-binol ligand. It is also important to note that the indenyl ring is only η^{3}-bound in the solid state of $\mathbf{8}$, with significant elongation of the $\mathrm{Zr}-\mathrm{C}$ (aromatic) distances (Figure 3). A similar bonding mode is also seen in 7 (Figure 2) whereas the indenyl ring in 3 (Figure 1) more closely approaches η^{5}-coordination.

We thank the National Science Foundation (Grant CHE0078405) for financial support of this research.

Notes and references

\ddagger Selected spectroscopic data. For 3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta$ 6.75-7.61 (aromatics); 6.43, 6.33 ($\mathrm{d}, \eta^{5}-\mathrm{CH}$); 3.27, 2.49 ($\mathrm{s}, \mathrm{N} M e_{2}$); 1.68, $1.44\left(\mathrm{~s}, \mathrm{CMe} e_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 2{ }^{\circ} \mathrm{C}\right): \delta 172.5(\mathrm{Ti}-\mathrm{O}-C) ; 101.3\left(\eta^{5}-\mathrm{CH}\right)$. For 4: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta 6.81-7.60$ (aromatics); 3.11, 2.59 (s, $\left.\mathrm{N} M e_{2}\right) ; 2.22,1.99\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 1.65,1.44\left(\mathrm{~s}, \mathrm{CMe} e_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$: $\delta 172.2(\mathrm{Ti}-\mathrm{O}-\mathrm{C}) ; 108.1\left(\eta^{5}-\mathrm{CMe}\right)$. For $5:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta$
6.85-7.59 (aromatics); 6.55, $6.19\left(\mathrm{~d}, \eta^{5}-\mathrm{C} H\right) ; 2.91,2.31$ ($\mathrm{s}, \mathrm{N} M e_{2}$); 1.64, $1.44(\mathrm{~s}, \mathrm{CMe} 3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 171.0(\mathrm{Zr}-\mathrm{O}-C) ; 95.5\left(\eta^{5}-\mathrm{CH}\right)$. For $6(\mathrm{p}-S, S):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 6.65-8.25$ (aromatics); 5.44 (d, η^{5} $\mathrm{C} H) ; 1.35,1.32\left(\mathrm{~s}, \mathrm{CMe}_{3}\right) ; 0.42,0.29\left(\mathrm{~s}, \mathrm{Si} M e_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$: $\delta 173.1,165.6,156.6$ (Ti-O-C); $106.3\left(\eta^{5}-C H\right)$. For 7(p-S,S): ${ }^{1} H$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 6.49-8.16$ (aromatics); 2.27, $1.62\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 1.35,1.22$ (s, CMe_{3}); 0.49, 0.28 (s, SiMe 3). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 173.2,163.8,160.7$ (Ti-O-C); 100.3 ($\left.\eta^{5}-C \mathrm{Me}\right) .(\mathrm{p}-R, S):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 5.81-7.96$ (aromatics); 2.24, $1.59\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 1.47,1.33\left(\mathrm{~s}, \mathrm{CMe} e_{3}\right) ; 0.46,0.16\left(\mathrm{~s}, \mathrm{Si} M e_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 173.0,168.7,156.9$ (Ti-O-C); $108.1\left(\eta^{5}-\mathrm{CMe}\right)$. For 8(p-R,R): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 6.53-8.28$, (aromatics); $5.59\left(\mathrm{~s}, \eta^{5}-\right.$ $\mathrm{CH}) ; 3.57\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 1.39\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 1.35,1.26\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$; $1.35(\mathrm{~s}), 1.22\left(\mathrm{~s}, \mathrm{CMe}_{3}\right) ; 0.49(\mathrm{~s}), 0.36\left(\mathrm{~s}, \mathrm{Si}_{2} e_{3}\right)$. Selected ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$, $\left.25^{\circ} \mathrm{C}\right): \delta 171.9,160.7(\mathrm{Zr}-\mathrm{O}-C) ; 99.4\left(\eta^{5}-\mathrm{CH}\right)$.
§ Crystal data: For 3 at $150 \mathrm{~K}: \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{OTi}, \mathrm{M}=454.52$, space group $P 2{ }_{1} / n$ (No. 14), $a=12.4594(3), b=11.7575(3), c=18.0226(4) \mathrm{A}, \beta=$ 108.1734(13) ${ }^{\circ}, V=2508.5(2) \AA^{3}, d_{\text {calc }}=1.203 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Of the 5700 unique reflections collected ($5 \leq \theta \leq 27^{\circ}$) with Mo-K ${ }_{\alpha}(\lambda=0.71073 \AA$), the 5694 with $F_{\mathrm{o}}{ }^{2}>2.0 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R=0.041$ and $R_{\mathrm{W}}=0.099$. For 4 at 150 K $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{OTi}, \mathrm{M}=482.57$, space group $P 2_{1} / c$ (No. 14), a $=10.0202(2)$, $b=13.0802(3), c=22.0926(4) \AA, \beta=102.3111(13)^{\circ}, V=2829.01(19)$ $\AA^{3}, d_{\text {calc }}=1.133 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Of the 6044 unique reflection collected ($5 \leq \theta \leq 27^{\circ}$) with Mo-K ${ }_{\alpha}(\lambda=0.71073 \AA)$, the 6040 with $F_{\mathrm{o}^{2}}{ }^{2}>2.0 \sigma$ $\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R=0.061$ and $R_{\mathrm{W}}=0.160$. For 5 at $150 \mathrm{~K}: \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{OZr}, \mathrm{M}=497.84$, space group $P \overline{1}$ (No. 2), $a=12.9534(3), b=14.0719(4), c=15.2631(4) \AA, V=2589.5(2)$ $\AA^{3}, d_{\text {calc }}=1.277 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Of the 11660 unique reflections collected ($5 \leq \theta \leq 27^{\circ}$) with Mo-K ${ }_{\alpha}(\lambda=0.71073 \AA)$, the 9145 with $F_{\mathrm{o}^{2}}{ }^{2}>2.0 \sigma$ ($F_{\mathrm{o}}{ }^{2}$) were used in the final least-squares refinement to yield $R=0.053$ and $R_{\mathrm{W}}=0.136$. For 6 at $150 \mathrm{~K}: \mathrm{C}_{49} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Ti}, \mathrm{M}=795.05$, space group $P 2_{1}$ (No. 4), $a=11.9436(10), b=13.1268(10), c=16.1538(12) \mathrm{A}, \beta=$ $102.861(4)^{\circ}, V=2469.1(6) \AA^{3}, d_{\text {calc }}=1.069 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$. Of the 7600 unique reflections collected $\left(5 \leq \theta \leq 25^{\circ}\right)$ with $\mathrm{Mo}-\mathrm{K}_{\alpha}(\lambda=0.71073 \AA)$, the 7586 with $F_{\mathrm{o}}{ }^{2}>2.0 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R=0.087$ and $R_{\mathrm{W}}=0.187$. For 7 at 150 K : $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Ti}$, $\mathrm{M}=823.10$, space group $P 2_{1}$ (No. 4), $a=12.0012(4), b$ $=13.6234(5), c=16.3611(6) \AA, \beta=105.5417(14)^{\circ}, V=2577.2(3) \AA^{3}$, $d_{\text {calc }}=1.061 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$. Of the 10232 unique reflection collected (5 $\left.\leq \theta \leq 30^{\circ}\right)$ with $\mathrm{Mo}-\mathrm{K}_{\alpha}(\lambda=0.71073 \AA)$, the 10199 with $F_{\mathrm{o}}{ }^{2}>2.0 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R=0.053$ and R_{W} $=0.148$. For $8 * \mathrm{C}_{7} \mathrm{H}_{8} * \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ at $150 \mathrm{~K}: \mathrm{C}_{68} \mathrm{H}_{86} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Zr}, \mathrm{M}=1146.83$, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=12.5231(3), b=19.2231(4), c=$ 25.9127(6) $\AA, V=2964.61(10) \AA^{3}, d_{\text {calc }}=1.221 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Of the 12567 unique reflections collected $\left(5 \leq \theta \leq 26^{\circ}\right)$ with Mo-K ${ }_{\alpha}(\lambda=$ $0.71073 \AA$), the 12553 with $F_{\mathrm{o}}{ }^{2}>2.0 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final leastsquares refinement to yield $R=0.063$ and $R_{\mathrm{W}}=0.136$. Flack parameters: compound 6, 0.04(5); compound 7, $-0.01(2)$; compound $\mathbf{8}, 0.03(4)$. CCDC 201167-201170, 201172, 201174. See http://www.rsc.org/suppdata/cc/b2/ b212724e/ for crystallographic data in .cif or other electronic format.

1 R. Beckhaus, in Metallocenes, ed. A. Togni and R. L. Halterman, WileyVHC, Weinheim, 1998, p. 153; E.-I. Negishi and J. Montchamp, in Metallocenes, ed. A. Togni and R. L. Halterman, Wiley-VHC, Weinheim, 1998, p. 241.
2 A. L. McKnight and R. M. Waymouth, Chem. Rev., 1998, 98, 2587; R. L. Halterman, Chem. Rev., 1992, 92, 965; J. Okuda, Topics Curr. Chem., 1991, 160, 99; C. Janiak and H. Schumann, Adv. Organomet. Chem. 1991, 33, 291
3 M. G. Thorn, P. E. Fanwick, R. W. Chesnut and I. P. Rothwell, Chem. Comтип., 1999, 2543
$4 \mathrm{Zr}\left(\mathrm{NMe}_{2}\right)_{4}$ was prepared using the procedure outlined by G. M. Diamond and R. F. Jordan, Organometallics, 1995, 14, 5.
5 F. R. W. P. Wild, J. Zsolnai, G. Huttner and H. H. Brintzinger, J Organomet. Chem., 1982, 232, 233; B. Chin and S. L. Buchwald, J. Org. Chem., 1996, 61, 5650.
6 G. M. Diamond, S. Rodewald and R. F. Jordan, Organometallics, 1995, 14, 5; G. M. Diamond and R. F. Jordan, Organometallics, 1996, 15, 4030; G. M. Diamond, R. F. Jordan and J. L. Petersen, J. Am. Chem. Soc., 1996, 118, 8024.

